科普:AI 名词解释
啊!ChatGPT 最近很火呀,你们说的 AGI、AIGC、AI Agent、Prompt、LLM ... 到底是什么意思啊?还有 Midjourney、Lensa、Sora、DALL-E、Llama、GPTs ... 又是什么鬼?
名词解释
- AI(Artificial Intelligence,人工智能):是研究和开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新技术科学。它的目标是让机器具备类似人类的智能,能够感知、理解、学习、思考、决策等。人工智能是智能学科的重要组成部分,旨在生产出一种能以人类智能相似的方式做出反应的智能机器。
- AGI(Artificial General Intelligence,通用人工智能):是人工智能发展的一个更高级阶段。它指的是机器能够像人类一样具备全面的智能能力,包括认知、情感、自我意识等方面。AGI 能够解决未曾预见的问题,并在不同环境中灵活适应。相比于特定领域的人工智能,AGI 能够理解和自主处理各种复杂任务,具有更广泛的认知能力。
- AIGC(AI Generated Content,人工智能生成内容):是 AI 的一个应用领域。它指通过 AI 技术自动生成各种形式的内容,如文本、图像、音频、视频等创意作品。AIGC 涵盖了人工智 能、计算机图形学和深度学习等领域技术的综合平台,目的是实现更加高效、智能化的图像识别和处理,提升人机交互的用户体验。在游戏、虚拟现实、智能安防等领域,AIGC 都有广泛的应用。
- 生成式人工智能(Generative AI,生成式 AI):是深度学习的一个子集,其中 AI 系统可以根据所学知识生成独特而真实的内容。生成式人工智能模型使用海量数据集进行训练,这使它们能够使用自然类似于人类创作的文本、音频或视觉效果来响应人类查询。例如,来自 AI21 Labs、Anthropic、Cohere 和 Meta 的 LLM 是生成式人工智能算法,组织可以使用这些算法来解决复杂的任务。
- ChatGPT:OpenAI 创建的对话式聊天机器人,使用强调来回对话的语言模型。截至目前,可以免费试用。
- GPT(Generative Pre-Trained Transformer):这是一种使用深度学习生成类人文本的 AI 模型,由 OpenAI 创建。其中,“生成”是指其生成文本的能力;“预训练”是指使用一个机器学习任务的模型来训练另一个,类似于人类在学习新事物时如何利用现有知识(在这种情况下,GPT 涉及对大量文本进行预训练);“Transformer”是一种神经网络,可以全面了解数据序列所有部分(如句子中的单词)之间的关系。它被视为人工智能的一项突破,因为它比以前的方法更能理解上下文和细微差别。
- GPT-3:OpenAI创建的第三代语言模型。它构成了过去两年推出的大量使用OpenAI 的 API的 AI 编写工具的基础。(ChatGPT 使用改进版本,称为 GPT-3.5,而 GPT-4 正在开发中。)
- OpenAI:GPT-3、ChatGPT 和 DALL-E 背后的人工智能研究公司。它最初是一个非营利组织,但现在经营着一家雇佣大部分员工的“利润上限”公司。值得 注意的是,Elon Musk 是联合创始人,但于 2018 年辞去了 OpenAI 董事会的职务。
- Prompt:是一种基于自然语言处理的交互方式,它通过机器对自然语言的解析,实现用户与机器之间的沟通。可以理解为是一段给定的文本或语句,用于启动和引导机器学习模型生成特定类型、主题或格式的输出。在自然语言处理领域中,Prompt 通常由一个问题或任务描述组成,例如“给我写一篇有关人工智能的文章”、“翻译这个英文句子到法语”等等。在图像识别领域中,Prompt 则可以是一个图片描述、标签或分类信息。
- AI Agent(人工智能代理):一种能够自主理解、规划决策、执行复杂任务的智能体。
- NLP(Natural Language Processing,自然语言处理):是 AI 的一个分支,它允许计算机系统理解和生成人类语言。NLP 系统使用计算语言学和机器学习技术将语言数据转换为称为标记的简单表示,并理解它们的上下文关系。
- LLM(Large Language Model,大语言模型):是基于大量数据进行预训练的超大型深度学习模型,可以执行各种自然语言处理(NLP)任务。大型语言模型会使用多个转换器模型,并使用海量数据集进行训练,因此规模非常庞大。
- GPTs:即 GPT Store,是 OpenAI 推出的一个应用商店平台,里面提供了各种各样的 GPT 智能应用。自2023年11月开放 GPTs 以来,短短两个月,用户已创建多达 300 万个 GPTs,涉及办公、设计、生活、教育、科研、编程等各个领域。
- 机器学习:人工智能的一个子领域,这是教计算机通过数据和算法识别模式的实践。它与传统编程的不同之处在于,计算机不需要明确编码来解决每一个潜在场景。
- 神经网络